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Abstract: This paper adresses the problem of determining upper and lower bounds for
the effectivity index on the a-posteriori estimate of the error in the finite element method.
These bounds are given explicitly for a certain concrete estimator for linear elements and
unstructured triangular meshes. They depend strongly on the geometry of the triangles
and (relatively weakly) on the smoothness of the solution. An example shows that the
bounds are not over pessimistic. In [41 detailed numerical experimentation is given.
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1. Introduction. Since the first papers by Babu~ka and Rheinboldt on the a-poste-
riori estimation of the errors in the finite element method [5,6], this subject became an
increasingly important aspect of the application of this method. During the last years sev-
eral codes including different estimators have been developped [14,23,25,26,28] and nowa-
days there are many different estimators in use for a given problem (see, for instance,
[12,13,21,24] and references there in).

A standard measure of the quality of an estimator is the so called effectivity index

eff =estimated 
error

true error

For a given problem an estimator is said to be equivalent to the error if the effectivity
index is bounded below and above by two strictly positive constants independently of the
meshsize:

c <eff< C;

these constants may depend on the class of functions under consideration. (Here and
thereafter, c and C will denote constants not necessarily the same at each occurrence, but
always independent of the meshsize).

A property that has been considered highly relevant to measure the potential quality
of an estimator is the so called asymptotic exactness. Roughly speaking, an estimator is
asymptotically exact for a particular problem if its effectivity index converges to one when
the meshsize aproaches to zero.

In the one dimensional case Babu~ka and Rheinboldt [7,8] made a complete analysis
of asymptotically exact error estimators. For two dimensional elliptic problems, several
estimators have been proved to be asymptotically exact when used on almost uniform
patches of rectangular or triangular meshes, provided the solution of the problem is smooth
enough [2,11,17,18,19].

In particular, for linear triangular elements, some well known local estimators like
Bank-Weiser's [15] and Zienkiewicz-Zhu's [31] are asymptotically exact on uniform meshes
as that in Figure 1.1.a but not on other rather uniform meshes as those in Figures l.1.b
and 1.1.c. (See [19] for Bank-Weiser's estimator and [9] for Zienkiewicz-Zhu's).
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(a) (b) (c)

Figure 1.1

A-posteriori error indicators (i.e.: estimators per element) are employed in adaptive

processes to identify those portions of the mesh with bigger errors in order to generate a
new refined mesh. Usually, the meshes generated by these adaptive processes are regular

(in the sense of a minimal angle condition) but not uniform as in Figure 1.1.a. Very likely,
all the used estimators are not asymptotically exact on the meshes that are adaptively con-

structed. However, the estimators actually in use are equivalent to the error for any regular

family of meshes with bounds on the effectivity index depending only on the regularity of

the mesh. Anyway, in no case these bounds are known explicitly. To increase the accuracy

of the indicators and estimators, various correction factors derived by computational tests

are used.

In this paper we shall analyze a particular estimator based on Babugka-Miller's [3];

(this type of estimator is used, for instance, in [25]). We shall prove again the equivalence

of this estimator for the Laplace equation, but in such a way that it will be able to compute

asymptotic bounds of its effectivity index in terms of the geometry of the mesh and on

the smoothness of the solution. We shall show that these bounds are sharp and that their

dependence on the geometry of the mesh is optimal. Finally we shall present similar results

for the elasticity problem.

2. The error estimator. Let us consider as our first model problem the Laplace

equation with mixed boundary conditions. Let Q2 be a bounded polygon in R2 and let

its boundary ffl be split into two parts I'd and r, (rd of positive length). Let u be the

solution of the problem

-Au=f, inf2,

(2.1) u = 0, on rd ,
Ou =

4 1 on rn
4



where n is the unit outer normal vector to 00, f E L 2 (Q) and g E L 2(F'r).

We shall use the standard notation for Sobolev spaces H m (D), their norms II "Ilm,r

and seminorms 1" Ima,D. Let Hrd(f2) := {v E H'(Q): vird = 0}. l" I,,, is a norm on that

space; it is the energy norm of this model problem.

Let {Th} be a regular family of triangulations of Q (i.e.: the minimal angle of all the
triangles is bounded below by a positive constant, the same for all the meshes); as usual h

stands for the maximal meshsize and we assume that, when the edge of a triangle intersects
,Q, it is completely contained either in rd or in Fn. The meshes are not assumed to be

quasiuniform.

Let uh E Vh := {v E Hrd() : VIT E P 1 (T), VT E Th} be the piecewise linear finite

element approximate solution of problem (2.1). (Pm(T) denotes the set of polynomial
functions defined on T of degree not greater than m). Let e := u - uh denote the error of
this approximation.

Integrating by parts we obtain for any v E Hrl(Q)

J Ve -VV =jVU VV I:ITVUh V = fV + gV j 8 -
n rTETh in I EhI n

where for each triangle T, n T is its unit outer normal vector.

Let us call ri the union of all the interior edges of the triangulation Th. For each edge

e C Pi let us choose an arbitrary normal direction n and denote the two triangles sharing

this edge Tin and Tout, where the normal n is outwards Tin. Let
fl euh 11 (tloo)n Vu~°-

12nj V (UhIT) . n - V (uhT I)

denote the jump of - accross the edge e; this value is independent of the choice of n.

With this notation we may now write the so called residual equation:

(2.2) Ve.VV fV + g- n 1'U, v, VvEHd(Q).
inf ,,( O tCri 9 t dQ

This equation relates the error e with the interior residuals TI = - A(uT) - A(UhIT)],
the boundary residual (g - a.l ) and the jumps of the gradient of the finite element ap-

proximation [-] Several estimators have been obtained by approximating the error as
the solution of this equation [3,15,16,29]. The estimator that we shall consider is a slight

variation of Babugka-Miller's [3] that Verfiirth describes for the Stokes problem [29].

For any triangle T E Th, let ET be the set of its three edges and let

IITf := f

5



be the L2(T)-projection of f onto the constants. For any edge t E r., let

111g := j g

be the L2(f)-projection of g onto the constants. For each edge t of the triangulation, let

8{ h I-, iftcri,
(2.3) J1 : 2 (II, g -a-uk[t if t c rn

0, ifecrd •

We define as an estimator of the local energy error lell,T,

(2.4) :7T [T2(IT f)2 + E Ie12J2
tEET

Although we deal with the Laplace model problem, this approach is valid for any
divergence type operator with piecewise constant coefficients if the meshes are such that
the interfaces of the coefficients coincide with boundaries of elements.

3. Equivalence between the error and the estimator. The ideas of Verfiirth
[30] can be directly applied to our simpler model problem to prove the following theorem
without any further assumption on the mesh and for any problem (2.1) with solution

U E Hl(Q).

THEOREM 3.1. With the definitions and assumptions of Section 2, there exist two
positive constants C and C' only depending on the regularity of the mesh such that

(3.1) ell,, 5 C [ 7 (2 + ITI Ilf - 1I T f 112 8nr, lei lII _ llegiI2 t)

and
(3.2)

(3T . C' [1eji, + IT' if - tiT' fhIoT), + (lc (Igr- I, o ' ]
\TIC T IC:(a n)

where T U{T' E Th : T and T' have a common edge}

Proof The proof will not be given here because it is essentially identical to that in
[301.
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These bounds show that whenever the data f and g are locally smooth, if the error is

properly 0(h-) (0 < s < 1), then the estimator

(3.3) 7n _ T

is globally equivalent to the error. In fact, we have the following theorem.

THEOREM 3.2. In addition to the assumptions of Section 2, let us assume that there
exists a triangulation T such that

(3.4) fIT E H'(T), VT E T

andVTET : OTFnl#@

(3.5) gt E H 1 (e) , v E 9T n r,;

let us also assume that all the triangulations Th are refinements of T.

If there exist constants C* > 0 and s E (0, 1] not depending on h such that

(3.6) te[lil > C-h-,

then there exist two positive constants c and C such that

(3.7) cr. <5 IeI,,Q < C%, .

Proof. By using (3.1-5), the regularity of the meshes and the standard aproximation
properties of the projections Hrf and 11,g, we may write

lel < C 2 + h4  I,T + E IgI.t

TET tEC

whereC:= {e edge of TET ( : ec n},and

7h, <C' Jeli+h 2 ( If1,,T) + h! ( g I1) ,

since each T is the union of at most 4 triangles of Th. Hence, by using (3.6) the theorem
is proved. [I

7



Remark 3.1. The assumptions about the existence of T is made only to cover those
cases where f and g are piecewise smooth and the meshes are such that the interfaces of the
data coincide with boundaries of the elements. On the other hand, these local smoothness
assumptions (3.4) and (3.5) can be weakened; in fact, if f IT E H'(T) and glt E Hi+ (t)
for some e > 0, then the conclusion of Theorem 3.2 and all what follows are valid. El

Remark 3.2. The error is always properly 0(h') (i.e.: assumption (3.6) is valid)
except for trivial cases (see [3]). El

We shall now describe a variation of Verfiirth's proof of Theorem 3.1 that will give
computable asymptotic approximations of the constants c and C in the equivalence (3.7)
(assuming slightly stringent hypothesis for the upper bound). In the following sections, we
shall show that the constants obtained in this way are almost achievable.

Let V := {v E Hd(fl) : VIT E Pp(T), VT E Th } (in particular V1 = VA) and, forp 2,
let up E V be the finite element approximate solution of problem (2.1) in this space. Let
ep := UP - Uh, then

(3.8) Iel1,, :_ ju - upl,, + lepjl,

It is known [10] that, if u E Hl+e(fl) for some c > 0 and if the family of meshes is
quasiuniform, then

(3.9) lu - Upli,.- :_ Chmn{p"E}p- Ilulll+f,

with a constant C independent of u, h and p. Therefore, if the solution is smooth enough,
say u E HI+'(Q) for some e > 1, ju - upll,, is asymptotically negligible with respect to

the error Iel', for any p > 2. Instead, if the solution u E Hl+'(f2) for some f E (0, 1], the
error lell,0 is expected to be 0(h') and, in this case, Iu - upll, will be negligible with
respect to lell, only for p big enough. In any case, even for h small or for p big enough
(or both together), the term lu - upll. can be neglected in (3.8). Therefore, it is enough
to bound lepll,,. Now,

(3.10) _ 12 --Vep Vep jV(up-u).Vep+jVe-Ve jVeVep

where we have used that ep E Vp.

For any continuous function v defined on 9, let v, denote its Lagrange piecewise linear
interpolant on the mesh Th. Since et E Vh, then from (3.10) we have

ep 2 j Ve -V(e8 - el)

8



and by using the residual equation (2.2) we may write

where fE ~Je-P t(~e)

Usin the) deiiio 24)Th

Usig te dfintio (24)of the local estimator rT T and Cauchy-Schwarz inequality we
have:

(3.11) IpU fI -[- eIJ (+,, - e ) + "e , + -

TE~h T2 t can)

This last expression allows us to prove the following theorem.

THEOREM 3.3. Under the assumptions of Theorem 3.2,

[e1l f [ (e )2  ] -e1 + u - uelu,

(3.12) + C 2  i

where

(3.13) (cf)2 :- sup- ') + Et , )

Proof According to (3.11) and the definition ofwe

(31IeP 2, < E3 q~tT e~T (ep - e)I' + [>3 (C)2 -IepI +6(ep -e )I
TET AIT 2 TE TI P

9



Proceeding as in Theorem 3.2 we prove that

6(ep - e) :S C h ( If I ,T) + h i I ) Iep.[ ,-

So, by using (3.8) we conclude the theorem.

The constants CP in this theorem depend on the degree p used to make Iu - upll,n
negligible in (3.12). However the next theorem shows that this dependence is very weak.

THEOREM 3.4. Let CP be defined by (3.13); there exists a constant C, only depending
on the shape of the triangle T such that Vp > 2

CP < C log'p3

Proof Let T {(x,y) x > 0, y > 0, and x + y < 1}. For any polynomial i5 of
degree p > 2

gI'I 11 C log p PII1 J:1,

with C independent of a and p; (this is an inmediate consequence of Theorem 6.2 in [1]).

Since (9 - I) vanishes for : E Po, then

and so, for any v E Pp(T), by changing coordinates to the triangle T we obtain
IIv - V'IILex(T) < CT log2p Iv11 j

with a constant CT only depending on the shape of the triangle. Using this inequality in
the definition (3.13) of CP we conclude the theorem.

In the following section we shall compute the costants CP for different values of p and
we shall analyze their dependence on the shape of the triangle T. On the other hand, for
the lower bound in (3.7) we have the following theorem.

THEOREM 3.5. For each mesh Th, let w E Hr, (Q) (eventually depending on the mesh)
be such that for all the triangles T E Th,

(3.14) IT (H f)w = IT 12(IT f) 2

(3.15) Zj = 1

10



and

(3.16) 3C' > 0 : IWIl,T < C'9.ti,

where C' may depend on the shape of the triangle but not on its size h

Then, under the assumptions of Theorem 3.2,

(3.17) Ti_ l C'){Ie + C [ (z I+ i,)

Proof. By using (3.14) and (3.15) in the definition of 77, the residual equation (2.2)

and the definition of 6, we have

2 = i 1 =Ve . Vw - b(w)
77T L. [JT f)W + , itew

TETh TETh IEET

and hence,

T -~ IeI,,IwIO + 6(w)l
TETh

Now

Zj,%(f - If)W T E-JI(f - If)(w - IW) C 1: ITI If 11,TIWII,T
TETrh

and

J(g - H, w= Z(g - HI'g)(W - flIW) :5 C 1: 10j IgI1,fIwI1,T,
cr, t Fc-r, Itc r

where Tt is the triangle in Th such that e C OTt. Therefore, by using (3.16), we have

and hence we obtain (3.17). ]-

In the next section we shall exhibit functions w satisfying the hypothesis of Theorem

3.5 and we shall show how to calculate the constant C;..

11



4. Computation of the bounds. In order to compute the constants CP of Theorem
3.3, let z0 E Pp(T) be the solution of the weak finite dimensional problem

(4.1) Vzo-Vv = [T 1 (v - VI), Vv E P'(T)

and, for i=1,2,3, let zi E Pp(T) be the solution of

(4.2) Vzi . VV = 1 1~i (v - vI) , Vv E P=p(T),

where e, i = 1, 2, 3, are the three edges of T. We may write
3E= "z (f3VV) 2

(Cr) sup Z °(fT Vzi . VV) 2  (f .

--P 2 sp i= sup 2 T '

TE 1p \Zo IVllT 7sup IVl,T

where Z is the subspace of Pp(T) spanned by {zi=3i- 0.

For v = E3ovizi E Z we may write vI2,T - vtCv, where v (vO,. .. ,v3) and
C E R '4 is the symmetric matrix of entries Cj :- fT VZ " Vzj, i,j - 0,... , 3. On the

other hand E (fT Vz,. Vv) 2 = VtC 2 v. Therefore,

(c) S up vtC 2v vtCv
-up =sup

vER 4 ; vLCv#o vtCv v$O VtV

is the spectral ratio of C.

So, to compute the constants for any degree p > 2 and any triangle T, we only need the
solutions zi of problems (4.1) and (4.2). These functions are the p-degree finite element
solutions of elementary elliptic problems on the triangle T with a mesh consisting of this
only triangle; they have been computed by using the code PROBE [271. Our computations
show that for any triangle T and for any degree p = 2,3,..., 8,

(4.3) 0.548 logYp sin- ( < CP < 0.813 logp sin T)

where aT is the minimum angle of T. These constants CP also depend on the other angles
of T; however this dependence is very weak. In fact, the estimate (4.3) is valid for all the
triangles with minimum angle a1., independently of the size of the other angles.

From Theorem 3.4 we know that for any fixed triangle the constants CP are bounded

above by logip; our computations show that, actually, they are almost proportional to
logi p. On the other hand, for a fixed degree p > 2, the constants depend on the geometry;
they essentially depend on the minimum angle and in fact they deteriorate when this angle
is very small, but the square roots in (4.3) makes this dependence to be weak.

12



Now, we shall describe how to compute the constants C of Theorem 3.5. To this
goal we need a function w E Hd(Q2) satisfying (3.14), (3.15) and (3.16) with constants
C' as small as possible. We define this function w in each triangle but in such a way that
it satisfies the required global smoothness. For any edge R of the triangulation we choose
a continuous function 0, vanishing at both ends of the edge and such that its average

,:= 1i ft i : 0. To guarantee that w E Hrd(Q) we consider only those functions w

whose restrictions to t are a multiple of 0, satisfying (3.15); therefore wit = V ~,.
C1

We shall introduce some notation in order to define w in the interior of each triangle
T. Let r (H2.f, Jt,J 2 ,Jt 3 ) E R 4 and D := diag(ITI, ', I, t ); then 77' = r t D 2 r.

Let

{ w E H'(T) IT = IT 12 (fl2.f) and w11. - 0i = 1, 2,3}

W7 is an affine subspace of H1 (T) parallel to the subspace

KTI:={wEHI(T) J TW=0 and wIe =0, i=1,2,3}

Let w T E WT be such that

(4.4) IVwT12 = min /IVW1 2

JT wE WT IT

then w r satisfies (3.14), (3.15) and (3.16) with a constant

C1 = fsupT IVW 2 3
T \r *0 rt-D 2 )

To compute this constant we need to calculate fT IVw1 2 for any r R4 . Let us
remark that (4.4) holds if and only if w T E WT satisfies fT VwT" Vw = 0, Vw E K7.

Let w0 be the solution of the Dirichlet problem

(4.6) {-Awo=l , inT,

IW0 lOT = 0,

then
Vw0.Vw= W+ W" =0, VwEKT

IT IT JOIT EWWO VE
For i = 1, 2, 3, let wi be the solution of

(4.7)- Awi=, inT,

SWilli = , , WiloT\t, = 0

13



then also Vwi. V-==0, V'wEK T .

T T O

Hence,

W e T- CrWO +"144 Wi

with a constant Cr such that fT wr = MT
2 (lI f) is satisfied; that is:

Cr := fT IVwoI ITI2 MT f) 14 , wi

(we have used that, because of (4.6), fT T woI 2 = fcwo).

Finally, because of (4.7), fT Vwi • Vwo = 0, and so

I IVWT12 3 lelt ) f 1 12 (3f ViI 1i w :]
r , + - ITI -i=TT i o fI~wl i=1

which is a quadratic form on r. Therefore, the computation of the constant C' by means of

(4.5) reduces to a simple eigenvalue problem which can be easily solved once the solutions

wi of the Dirichlet problems (4.6) and (4.7) are known. In our computations we have also

used the code PROBE to solve numerically these problems.

The function w E Hrd(Q) obtained by patching together all the wT for T E Th, gives

the best possible constants for each triangle for a given choice of the edge functions ?P,
After some experimentation we choose ap as quadratic functions vanishing at both ends

of the edge. This choice gives constants satisfying for any triangle T:

(4.8) 3.45 sin- (T) <C' < 5.85 sin--' ( ,'T

where ar is the minimum angle of T. Once again, C' is almost proportional to sin-2 (2Z)

and practically independent of the size of the othe angles of the triangle.

Finally, by using (4.3) and (4.8) and Theorems 3.3 and 3.5, we obtain

0.171 sin2 ( - C h2 If12,T + h5 (, ) j e i~i

(4.9)

<0.813 log sin- +U - C h2 IflT + h( Ig2.)

14



where a is the minimum angle of the mesh Th. The bounds (4.9) can be made more

accurate for specific values of the minimal angle a and of the degree p > 2; Table 4.1

shows values of the constants C' and CP for the estimate

?2 :Ifl 12 3 h : IgI2't < ll,07n ch(E 1T +3(E I Hi

<5 + u- + c h2 ( IfI ,T + h( i[gl ) ,

for different values of a and p.

a C' Cp

p=2 p=4 p=6 p=8

7.50 0.051 2.390 3.306 3.660 3.988

15.00 0.072 1.682 2.341 2.609 2.839
22.50 0.087 1.363 1.918 2.156 2.343
30.00 0.099 1.169 1.670 1.895 2.058
37.50 0.108 1.035 1.508 1.727 1.876

45.00 0.115 0.939 1.400 1.615 1.757
52.50 0.119 0.875 1.334 1.547 1.684
60.00 0.121 0.850 1.309 1.522 1.657

Table 4.1. Constants of equivalence.

5. Sharpness of the bounds. We shall analyize the sharpness of the estimates

obtained in the previous section by considering a simple example. In particular, we shall

show that the dependence of these bounds on the geometry of the mesh is optimal.

Let us consider a particular case of problem (2.1) where S is a rectangle as in Figure

5.1, rd consist of the two vertical edges of 0 and rn of the horizontal ones; let f be a

constant and g = 0. The solution is a quadratic polynomial in x (and it does not depend
on y). Let T be a family of uniform meshes like that in Figure 5.1.

15



a..u =.0
an

u=0 \h u=0

au-. = 0

Figure 5.1

Since the solution is quadratic and the Neumann boundary conditions are zero, for any
of these meshes the finite element approximation is exact at the nodes. Therefore, it is
possible to compute explicitly the true error and the estimator. The error is the same for
all the triangles; it only depends on the meshsize h and on the angle 0 which measures the
regularity of the mesh (see Fig. 5.1). For all the elements disjoint with rd the estimator
is also the same; for those elements with an edge t on the boundary rd, the estimator will
be smaller since, according to (2.3), the corresponding "jump" Jt = 0. However, since the
proportion of the elements with an edge on rd goes to zero when the mesh is refined, the
global effectivity index is in this case, asymptotically equal to the local one effT := "T

eITL"

An explicit computation gives effT2 = 18 cot#. Let a denote, as before, the smallest
angle of the mesh. If 03 < M (as in Fig. 5.1), then a = / and it is simple to prove that for
this problem

(5.1) effT > 2.62sin -

On the other hand, if /> E, the smallest angle is a -,3 and in this case

(5.2) effT < 6.86sin (2)

Since f and g are constant and u2 coincides with u, then (4.9) gives for this problem:

(5.3) 1.47sin ( ) < eff < 5.84sin- (2)

The effectivity indexes (5.1) and (5.2) corresponding to different meshes show the sharpness
of the bounds in (5.3) and the optimality of the terms sink i (2) for their dependence on
the regularity of the mesh.
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6. The elasticity problem. We shall show how the techniques described above can

be applied to a different problem. Let us consider the 2D linear elastic equations; let Q, rn,

rd, n, Th, ri, T and £ be as in Sections 2 and 3; let H d(Q) {v E HI(Q) 2 Vird = 0}

be the space of admisssible displacements; let e and a : H 1 (11) 2 -. R 2X2 be the strain and

stress tensors defined by:

cii(v):= +0 ' iOj = 1,2

and
2

ao,(v) := A EEkk(v)bij + 2p-ij(v) , i,j = 1,2,
k=1

where A and p are the Lame coefficients that depend on the Young modulus E and the

Poisson's ratio v of the material:

Ev E 1E> , <v<-1
(1+v)(1-2v) '2(1+v)' 2

Given a body force f E L2 (Q)2 and a prescribed traction g E L 2 (r.) 2 with components

locally smooth as described in Theorem 3.2, let u be the solution of the boundary value

problem:

-(A+p)V(divu)-pAZu=f, in ,

(6.1) u=0, onrd,

o(u)n=g, onrn;

For v and w E H-d(Q) let

2

i,j=1

a is a continuous symmetric bilinear form. By using Korn's inequality (for instance, see

[20]), it is proved that a is coercive and so, the energy norm ". := a(., ) 2 is equivalent

to the usual Sobolev norm 11 - 1,, on Hr.d(Q) . Problem (6.1) has a unique solution U E

H .d(Q2) and it satisfies the weak formulation of this problem:

(6.2) a(u,v)= f.v+j g-v, VvEH -d(Q).

Let uh E V/ := {v E Hr-d(Q) : VIT E PI(T)2 , VT E Th} be the piecewise linear finite

element approximate solution of problem (6.2). Proceeding as in Section 2, it is proved

that the error e := u - uh satisfies the residual equation:

a(ev)=jf.V+ [g-a(uh)n].v+ Eft[(u)ni t ' v ' VVEHr.d(s).
n tcri
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For any triangle T E Th and for any edge t E rn, let IIrf and IIg be the local
projections of the data defined as before; let

J [o(u)nJ1 , if ec ri ,
Jt := 2 (IItg- [O uh)n] t},if e c rn,

0, iftc r,

and let

'?T [ITI21ITf12 + > 112
2 EE T

The proofs of the theorems in Section 3 can be immediately extended to this problem.
Let up E {v E Hrld(fl) : VIT E -Pp(T)2 , VT E Th } be the approximate finite element solu-

tion of problem (6.2) in this space and, for any U C Q, let II I, f i ,,= Ii(

THEOREM 6.1. With the definitions and assumptions introduced above

[ 1Ilelln < (C') l + Ilu - uplln

TEThi

(6.3) + C h2 (TIfT + h( Ig1 .t

where

(6.4) (CT sup + f2- E
vE",': 11vOT~o IlVIlT

THEOREM 6.2. Let w E Hr-d(Q) be such that for all the triangles T E Th,

T MT f). W = IT12 PITf12

ITW Iel2f 2

1EE T  EE T

and

3C'T > o0 IIWIIT 5 C'TT



where C may depend on the shape of the triangle but not on its size hT. Then

7, sup C, e , + C [h2( I,) + h2 > g~,)b(TETh \ TET T)/E

The constants CP and C can be computed by techniques analogous to those in
T T,

Section 4. They depend very weakly on the Poisson's ratio v. The values of C, are almost
proportional to sin- (!2) (a T the minimum angle of T) as for the Laplace equation.
Instead, for any fixed degree p _ 2, our computations show that CP are almost proportional
to sin-1 (T); the exponent -3 indicates a much stronger dependence on the regularity

2 2
of the mesh.

3

Remark 6.1. The increase of the factor sin- (-) to sin2 (2L) is due to the
constant in Korn's inequality. Let us show it in the case that T is a triangle as that in
Figure 6.1.

C

• R .. •"'"

A E B

Figure 6.1

In [22] it is shown that, for any function v E H1 (T) 2 ,

(6.5) 1VI ,T 1 < C ( l o ([t) -v+ c2  [v[,Q 2

where hT is the diameter of T, Q is the biggest circle contained in T and r is the length
of its radius (see Fig 6.1). The estimate (6.5) is optimal.

If Iv[ ,Q were used in the denominator of (6.4) instead of I[viii., the term sin-i (2L)
would appear as in (4.3). On the other hand, for functions i E Pp(T)2 with three degrees
of freedom fixed at the vertexes B, C (to avoid rigid motions),

1 I 1 9,Q < 1z,?1,Q < C3
IIT -II[ [I -
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where Q is the quadrilateral of vertexes B, C, D, E in Figure 6.1; the constant C3 depends

on the regularity of Q (i.e.: on the quotient diam(Q)) but not on the small angle aTr Since
for a&T small,

rr
\ 2T JR h T'

then, for these functions we have that 11 k is bounded by sin - 1 (af-) (neglecting in (6.5)
II10 lIT

the logarithmic term). Therefore, since in (6.4) the supremum can be taken over these.- 3

functions i, we can expect C' to be proportional to sin I (2z). 0

The following table gives the values of the constants C" and CP in the estimate

77 n - C h + C 1,T + V g1, I) ell]

< C P q.+ ll H u p C h 2  
I12 + ,( : g 2t

in terms of the minimum angle a, for p = 2 and for different values of the Poisson's ratio.

v =.15 v =.30 v =.45

a/ C C1 CP C1 ____

7.50 0.042 31.34 0.038 30.31 0.022 28.48

15.00 0.060 11.10 0.054 10.81 0.032 10.26
22.50 0.075 6.05 0.066 5.96 0.040 5.74
30.00 0.088 3.93 0.078 3.92 0.047 3.85
37.50 0.100 2.81 0.089 2.84 0.054 2.85
45.00 0.113 2.12 0.101 2.19 0.061 2.23
52.50 0.125 1.67 0.113 1.75 0.069 1.82
60.00 0.136 1.36 0.124 1.44 0.077 1.52

Table 6.1. Constants of equivalence for different Poisson's ratios.

7. Conclusions and computational aspects..

1. The error estimator can either underestimate or overestimate the true error. If the
solution is unsmooth the accuracy of the estimator could deteriorate (but not drastically-
we have to consider a higher degree p in (3.12) and the deterioration is logarithmic)

2. The main factor in the accuracy of the estimator is the geometry of the elements.

The geometry (angle a) has to be understood in conection with the differential equation.a2 u
For example when an elliptic differential operator Z"i,,=, 2 aio 8xor (a, constants) is
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considered, the equation can be transformed into the Laplace equation by an affine trans-
formation which will modify the angles of the triangles. The constants arising in this case

are those of the transformed mesh.

3. The accuracy of the estimator depends on the relation of the axes of anisotropy
of the solution (i.e.: the eigenvectors of its Hessian matrix) and the orientation of the

triangles. If the main axe and the orientation of the triangles are orthogonal, the error is

overestimated; instead, it is underestimated if they are parallel.

4. The estimates we derived are theoretical and they allow us to define corr,:ction
factors; for example, for the Laplace equation and a uniform mesh of equilateral triangles

we can use (from table 4.1) V/(0.121 . 0.850) ; 0.32. If we rather needed a safe estimator

we should use a greater corrector factor (say 1.5).

5. For the elasticity equations, our estimates show a larger sensitivity with respect to
the minimal angle. This effect grows for larger Poisson's ratio.

6. In practice, the bounds on the effectivity index are expected to be better than in
our theoretical analysis. However, (5.1) and (5.2) show that they cannot be much better
without additional restrictions. Of course, the examples yielding (5.1) and (5.2) are more

or less extreme cases. For a detailed computational analysis we refer to [4].

REFERENCES

[1] I. BABU§KA, A. CRAIG, J. MANDEL AND J. PITKiRANTA, Efficient preconditioning for the p-version
finite element method in two dimensions, SIAM J. Numer. Anal. (to appear).

[2] I. BABU§KA AND A. MILLER, A-posteriori error estimates and adaptive techniques for the finite
element method, Tech. Note BN-968, IPST, University of Maryland, 1981.

[3] I. BABU§KA AND A. MILLER, A feedback finite element method with a posteriori error estimation:

Part I. The finite element method and some basic properties of the a posteriori error estimator,
Comp. Methods Appi. Mech. Engrg., 61 (1987), pp. 1-40.

[4] I. BABU§KA, L. PLANK AND R. RODRiGUEZ, Quality assesment of a-posteriori error estimators, (to
appear).

[5] I. BABU§KA AND W. C. RHEINBOLDT, A posteriori error estimators in the finite element method,

Internat. J. Numer. Meth. Eng., 12 (1978), pp. 1597-1615.
[6] I. BABU§KA AND W. C. RHEINBOLDT, Error estimates for adaptive finite element computations,

SIAM J. Numcr. Anal., 15 (1978), pp. 736-754.
[7] I. BABU§KA AND W. C. RHEINBOLDT, Analysis of optimal finite element meshes in R 1 , Math. Comp.,

33 (1979), pp. 435-463.
[8] I. BABU§KA AND W. C. RHEINBOLDT, A posteriori error analysis of finite element solutions for

one-dimensional problems, SIAM J. Numer. Anal., 18 (1981), pp. 565-589.
[9] 1. BABU§KA AND R. RODRiGUEZ, The problem of the selection of an a-posteriori error indicator based

on smoothening techniques, (to appear).
[10] I. BABU§KA AND M. SuRi, The h-p version of the finite element method with quasiuniform meshes,

Model. Math. Anal. Numer. (RAIRO), 21 (1987), pp. 199-238.
[11] I. BABU§KA AND D. Yu, Asymptotically exact a posteriori error estimator for biquadratic elements,

Fin. Elem. in Anal. & Design, 3 (1987), pp. 341-354.

[12] P. L. BAEHMANN AND M. S. SHEPHARD, Adaptive multiple level h-refinement in automated finite
element analysis, Eng. with Comp., 5 (1989), pp. 235-247.

21



[13] P. L. BAEHMANN, M. S. SHEPHARD AND J. E. FLAHERTY, A posteriori error estimation for triangular
and tetrahedral quadratic elements using interior residuals, SCOREC report 14-1990, Rensselaer
Polytechnic Institute, Troy, New York.

[14] R. E. BANK, PLTMG. A software package for solving elliptic partial differential equations. Users
guide 6.0, SIAM, Philadelphia, 1990.

[15] R. E. BANK AND A. WEISER, Some a posteriori error estimators for elliptic partial differential
equations, Math. Comp., 44 (1985), pp. 283-301.

[16] R. E. BANK AND B. D. WELFERT, A posteriori error estimators for the Stokes problem, (to appear).
[17] R. DURaN, M. A. MUSCHIETTI AND R. RODRiGUEZ, Asymptotically exact error estimators for rect-

angular finite elements, SIAM J. Numer. Anal. (to appear).
[18] R. DURkN, M. A. MUSCHIETTI AND R. RODRiGUEZ, On the asymptotic exactness of error estimators

for linear triangular finite elements, Numer. Math., 59 (1991), pp. 107-127.
[19] R. DURiN AND R. RODRiGUEZ, Asymptotic analysis of error estimators in the finite element method,

(to appear).
[20] G. DUVAUT AND J. L. LIONS, Les Inequations en Mchanique et en Physique, Dunod, Paris, 1972.
[21] R. E. EWING, A posteriori error estimation, in Reliability in Computational Mechanics (J. T. Oden,

ed.), Elsevier Science Publisher B. V. (North Holland), 1990, pp. 323-340.
(22] V. A. KONDRATIEV AND 0. A. OLEIN ', Hardy's and Korn's type inequalities an their applications,

Rendiconti di Matematica, Serie VII, O (1990), pp. 641-666.
[23] C. MESZTENYI AND W. SZYMCZAK, FEARS user's manual for UNIVAC 1100, Tech. Note BN-991,

IPST, University of Maryland, 1982.
[24] J. T. ODEN, L. DEMKOWITZ, W. RACHOWITZ AND T. A. WESTERMAN, A posteriori error analysis

in finite elements: the element residual method for symmetrizable problems with applications to

compressible Euler and Navier-Stokes equations, in Reliability in Computational Mechanics (J. T.
Oden, ed.), Elsevier Science Publisher B. V. (North Holland), 1990, pp. 183-204.

[25] PHLEX, Computational Mechanics Co. Austin, Texas.
[261 M. C. RIVARA, EXPDES user's manual, Catholic Univ., Leuven, Belgium, 1984.
[27] B. A. SZABO, PROBE - Theoretical manual. Release 1.0, NOETIC Tech. Corp., St. Louis, Missouri,

1985.
[28] R. VERFURTH, FEMFLOW-user guide. Version 1, Report, Universitiit Zirich, 1989.
[29] R. VERFiIRTH, A posteriori error estimators for the Stokes equations., Numer. Math., 55 (1989), pp.

309-325.
[30] R. VERFtiRTH, A posteriori error estimators and adaptive mesh-refinements techniques for the

Navier-Stokes equations., in Incompressible CFD - Trends and Advances (M. D. Gunzburger and
R. A. Nicolaides, eds.), Cambridge University Press, to appear.

[31] 0. C. ZIENKIEWICZ AND J. Z. ZHU, A simple error estimator and adaptive procedure for practical

engineering analysis, Internat. J. Numer. Meth. Eng., 24 (1987), pp. 337-357.

22



The Laboratory for Numerical Analysis is an integral part of the Institute for Physical
Science and Technology of the University of Maryland, under the general administration of the
Director, Institute for Physical Science and Technology. It has the following goals:

* To conduct research in the mathematical theory and computational implementation of
numerical analysis and related topics, with emphasis on the numerical treatment of
linear and nonlinear differential equations and problems in linear and nonlinear algebra.

" To help bridge gaps between computational directions in engineering, physics, etc., and
those in the mathematical community.

" To provide a limited consulting service in all areas of numerical mathematics to the
University as a whole, and also to government agencies and industries in the State of
Maryland and the Washington Metropolitan area.

" To assist with the education of numerical analysts, especially at the postdoctoral level,
in conjunction with the Interdisciplinary Applied Mathematics Program and the
programs of the Mathematics and Computer Science Departments. This includes active
collaboration with government agencies such as the National Institute of Standards and
Technology.

* To be an international center of study and research for foreign students in numerical
mathematics who are supported by foreign governments or exchange agencies
(Fulbright, etc.).

Further information may be obtained from Professor L Babuska, Chairman, Laboratory for
Numerical Analysis, Institute for Physical Science and Technology, University of Maryland, College
Park, Maryland 20742.


